17 Self-Adjoint and Normal Operators

17.1 Adjoints

Adjoint, T^* Suppose $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. The **adjoint** of T is the function $T^* : \mathcal{W} \to \mathcal{V}$ such that

 $\langle Tv, w \rangle = \langle v, T^*w \rangle$

for every $v \in \mathcal{V}$ and every $w \in \mathcal{W}$.

1. Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by

$$T(x_1, x_2, x_3) = (x_2 + 3x_3, 2x_1)$$

Find a formula for T^* .

2. Fix $u \in \mathcal{V}$ and $x \in \mathcal{W}$. Define $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ by

 $Tv = \langle v, u \rangle x$

for every $v \in \mathcal{V}$. Find a formula for T^* .

 $\frac{\text{The adjoint is a linear map}}{\text{If } T \in \mathcal{L}(\mathcal{V}, \mathcal{W}), \text{ then } T^* \in \mathcal{L}(\mathcal{W}, \mathcal{V}).}$

Properties of the adjoint

- (a) $(S+T)^* = S^* + T^*$ for all $S, T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.
- (b) $(\lambda T)^* = \overline{\lambda} T^*$ for all $\lambda \in \mathbb{F}$ and $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

(c) $(T^*)^* = T$ for all $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.

- (d) $I^* = I$, where I is the identity operator on \mathcal{V} .
- (e) $(ST)^* = T^*S^*$ for all $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ and $S \in \mathcal{L}(\mathcal{W}, \mathcal{U})$ (here \mathcal{U} is an inner product space over \mathbb{F}).

$\frac{\text{Null space and range of } T^*}{\text{Suppose } T \in \mathcal{L}(\mathcal{V}, \mathcal{W}). \text{ Then}}$

(a)
$$\ker T^* = (\operatorname{im} T)^{\perp}$$

(a)
$$\operatorname{Ker} I = (\operatorname{IIII})$$
.

- (b) $imT^* = (kerT)^{\perp}$.
- (c) $\operatorname{ker} T = (\operatorname{im} T^*)^{\perp}$.
- (d) $\operatorname{im} T = (\operatorname{ker} T^*)^{\perp}$.

<u>Conjugate transpose</u> The conjugate transpose of an m-by-n matrix is the n-by-m matrix obtained by interchanging the rows and columns and then taking the complex conjugate of each entry.

<u>The matrix of T^* </u> Let $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. Suppose $\mathcal{B} = \{e_1, ..., e_n\}$ is an orthonormal basis of \mathcal{V} and $\mathcal{B}' = \{f_1, ..., f_m\}$ is an orthonormal basis of \mathcal{W} . Then

 $[T^*]_{\mathcal{B}'\mathcal{B}}$

is the conjugate transpose of

 $[T]_{\mathcal{B}\mathcal{B}'}.$

17.2 Self-Adjoint Operators

Self-Adjoint (or Hermitian) Operator An operator $T \in \mathcal{L}(\mathcal{V})$ is called **self-adjoint** if $T = T^*$. In other words, $T \in \mathcal{L}(\mathcal{V})$ is self-adjoint if and only if

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$

for all $v, w \in \mathcal{V}$.

3. Suppose T is the operator on \mathbb{F}^2 whose matrix (with respect to the standard basis) is

$$\begin{pmatrix} 2 & b \\ 3 & 7 \end{pmatrix}.$$

Find all numbers b such that T is self-adjoint.

Eigenvalues of self-adjoint operators are real Every eigenvalue of a self-adjoint operator is real.

 $\frac{\text{Over } \mathbb{C}, Tv \text{ is orthogonal to } v \text{ for all } v \text{ only}}{\text{for the } 0 \text{ operator}}$

Suppose \mathcal{V} is a complex inner product space and $T \in \mathcal{L}(\mathcal{V})$. Suppose

$$\langle Tv, v \rangle = 0$$

for all $v \in \mathcal{V}$. Then T = 0.

$\frac{\mathbf{Over}\ \mathbb{C},\ \langle Tv,v\rangle \text{ is real for all }v \text{ only for}}{\mathbf{self-adjoint \ operators}}$

Suppose \mathcal{V} is a complex inner product space and $T \in \mathcal{L}(\mathcal{V})$. Then T is self-adjoint if and only if

 $\langle Tv, v \rangle \in \mathbb{R}$

for every $v \in \mathcal{V}$.

 $\begin{vmatrix} \mathbf{If} \ T = T^* \ \mathbf{and} \ \langle Tv, v \rangle = 0 \ \mathbf{for} \ \mathbf{all} \ v, \ \mathbf{then} \ \overline{T} = 0 \\ \hline \mathbf{Suppose} \ T \ \mathbf{is} \ \mathbf{a} \ \mathbf{self-adjoint} \ \mathbf{operator} \ \mathbf{on} \ \mathcal{V} \ \mathbf{such} \ \mathbf{that} \end{vmatrix}$

 $\langle Tv, v \rangle = 0$

for all $v \in \mathcal{V}$. Then T = 0.

17.3 Normal operators

Normal Operator

- An operator on an inner product space is called **normal** if it commutes with its adjoint.
- In other words, $T \in \mathcal{L}(\mathcal{V})$ is normal if

 $TT^* = T^*T.$

4. Let T be the operator on \mathbb{F}^2 whose matrix (with respect to the standard basis) is

$$\begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix}$$

Show that T is not self-adjoint and that T is normal.

T is normal if and only if $||Tv|| = ||T^*v||$ for

<u>all v</u>

An operator $T \in \mathcal{L}(\mathcal{V})$ is normal if and only if

$$||Tv|| = ||T^*v||$$

for all $v \in \mathcal{V}$.

For T normal, T and T^* have the same eigenvectors

Suppose $T \in \mathcal{L}(\mathcal{V})$ is normal and $v \in \mathcal{V}$ is an eigenvector of T with eigenvalue λ . Then v is also an eigenvector of T^* with eigenvalue $\overline{\lambda}$.

Orthogonal eigenvectors for normal operators

Suppose $\overline{T} \in \mathcal{L}(\mathcal{V})$ is normal. Then eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

17.4 Exercises

5. Suppose *n* is a positive integer. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by

$$T(z_1, ..., z_n) = (0, z_1, ..., z_{n-1}).$$

Find a formula for $T^*(z_1, ..., z_n)$.

6. Suppose $T \in \mathcal{L}(\mathcal{V})$ and $\lambda \in \mathbb{F}$. Prove that λ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^* .

7. Suppose $T \in \mathcal{L}(\mathcal{V})$ and \mathcal{U} is a subspace of \mathcal{V} . Prove that \mathcal{U} is invariant under T if and only if U^{\perp} is invariant under T^* .

- **8.** Suppose $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. Prove that
- (a) T is injective if and only if T^* is surjective;

(b) T is surjective if and only if T^* is injective.

9. Prove that

$$\dim \ker T^* = \dim \ker T + \dim W - \dim V$$

and

$$\dim \operatorname{im} T = \dim \operatorname{im} T$$

for every $T \in \mathcal{L}(V, W)$.

10. Make $P_2(\mathbb{R})$ into an inner product space by defining

$$\langle p,q \rangle = \int_0^1 p(x)q(x) \,\mathrm{d}x.$$

Define $T \in \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$ by $T(a_0 + a_1x + a_2x^2) = a_1x$.

- (a) Show that T is not self-adjoint.
- (b) The matrix of T with respect to the basis $\{1,x,x^2\}$ is

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.

11. Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that ST is self-adjoint if and only if ST = TS.

12. Suppose V is a real inner product space. Show that the set of self-adjoint operators on V is a subspace of $\mathcal{L}(V)$.

13. Suppose V is a complex inner product space with $V \neq \{0\}$. Show that the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.

14. Suppose dim $V \ge 2$. Show that the set of normal operators on V is not a subspace of L(V).

15. Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that there is a subspace U of V such that $P = P_U$ if and only if P is self-adjoint.

16. Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $||v|| = \sqrt{2}$ and ||Tv|| = 5.

17. Give an example of an operator $T \in \mathcal{L}(\mathbb{C}^4)$ such that T is normal but not self-adjoint.

18. Suppose T is a normal operator on V. Suppose also that $v, w \in V$ satisfy the equations

 $||v|| = ||w|| = 2, \quad Tv = 3, \quad Tw = 4w.$

Show that ||T(v+w)|| = 10.