17 Self-Adjoint and Normal Operators

17.1 Adjoints

Adjoint, T^{*} Suppose $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. The adjoint of T is the function $T^{*}: \mathcal{W} \rightarrow \mathcal{V}$ such that

$$
\langle T v, w\rangle=\left\langle v, T^{*} w\right\rangle
$$

for every $v \in \mathcal{V}$ and every $w \in \mathcal{W}$.

1. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}+3 x_{3}, 2 x_{1}\right)
$$

Find a formula for T^{*}.
2. Fix $u \in \mathcal{V}$ and $x \in \mathcal{W}$. Define $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ by

$$
T v=\langle v, u\rangle x
$$

for every $v \in \mathcal{V}$. Find a formula for T^{*}.

The adjoint is a linear map

If $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$, then $T^{*} \in \mathcal{L}(\mathcal{W}, \mathcal{V})$.

Properties of the adjoint

(a) $(S+T)^{*}=S^{*}+T^{*}$ for all $S, T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.
(b) $(\lambda T)^{*}=\bar{\lambda} T^{*}$ for all $\lambda \in \mathbb{F}$ and $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.
(c) $\left(T^{*}\right)^{*}=T$ for all $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$.
(d) $I^{*}=I$, where I is the identity operator on \mathcal{V}.
(e) $(S T)^{*}=T^{*} S^{*}$ for all $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$ and $S \in \mathcal{L}(\mathcal{W}, \mathcal{U})$ (here \mathcal{U} is an inner product space over $\mathbb{F})$.

Null space and range of T^{*}
Suppose $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. Then
(a) $\operatorname{ker} T^{*}=(\operatorname{im} T)^{\perp}$.
(b) $\operatorname{im} T^{*}=(\operatorname{ker} T)^{\perp}$.
(c) $\operatorname{ker} T=\left(i m T^{*}\right)^{\perp}$.
(d) $\operatorname{im} T=\left(\operatorname{ker} T^{*}\right)^{\perp}$.

Conjugate transpose The conjugate transpose of an m-by- n matrix is the n-by- m matrix obtained by interchanging the rows and columns and then taking the complex conjugate of each entry.

The matrix of T^{*} Let $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. Suppose $\mathcal{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of \mathcal{V} and $\mathcal{B}^{\prime}=\left\{f_{1}, \ldots, f_{m}\right\}$ is an orthonormal basis of \mathcal{W}. Then

$$
\left[T^{*}\right]_{\mathcal{B}^{\prime} \mathcal{B}}
$$

is the conjugate transpose of

$$
[T]_{\mathcal{B B}^{\prime}}
$$

17.2 Self-Adjoint Operators

Self-Adjoint (or Hermitian) Operator

An operator $T \in \mathcal{L}(\mathcal{V})$ is called self-adjoint if $T=T^{*}$. In other words, $T \in \mathcal{L}(\mathcal{V})$ is self-adjoint if and only if

$$
\langle T v, w\rangle=\langle v, T w\rangle
$$

for all $v, w \in \mathcal{V}$.
3. Suppose T is the operator on \mathbb{F}^{2} whose matrix (with respect to the standard basis) is

$$
\left(\begin{array}{ll}
2 & b \\
3 & 7
\end{array}\right)
$$

Find all numbers b such that T is self-adjoint.

Eigenvalues of self-adjoint operators are real

Every eigenvalue of a self-adjoint operator is real.
Over $\mathbb{C}, T v$ is orthogonal to v for all v only for the 0 operator

Suppose \mathcal{V} is a complex inner product space and $T \in \mathcal{L}(\mathcal{V})$. Suppose

$$
\langle T v, v\rangle=0
$$

for all $v \in \mathcal{V}$. Then $T=0$.
Over $\mathbb{C},\langle T v, v\rangle$ is real for all v only for self-adjoint operators

Suppose \mathcal{V} is a complex inner product space and $T \in \mathcal{L}(\mathcal{V})$. Then T is self-adjoint if and only if

$$
\langle T v, v\rangle \in \mathbb{R}
$$

for every $v \in \mathcal{V}$.
If $T=T^{*}$ and $\langle T v, v\rangle=0$ for all v, then $T=0$ Suppose T is a self-adjoint operator on \mathcal{V} such that

$$
\langle T v, v\rangle=0
$$

for all $v \in \mathcal{V}$. Then $T=0$.

17.3 Normal operators

Normal Operator

- An operator on an inner product space is called normal if it commutes with its adjoint.
- In other words, $T \in \mathcal{L}(\mathcal{V})$ is normal if

$$
T T^{*}=T^{*} T .
$$

4. Let T be the operator on \mathbb{F}^{2} whose matrix (with respect to the standard basis) is

$$
\left(\begin{array}{cc}
2 & -3 \\
3 & 2
\end{array}\right) .
$$

Show that T is not self-adjoint and that T is normal.

T is normal if and only if $\|T v\|=\left\|T^{*} v\right\|$ for all v

An operator $T \in \mathcal{L}(\mathcal{V})$ is normal if and only if

$$
\|T v\|=\left\|T^{*} v\right\|
$$

for all $v \in \mathcal{V}$.
For T normal, T and T^{*} have the same eigenvectors
Suppose $T \in \mathcal{L}(\mathcal{V})$ is normal and $v \in \mathcal{V}$ is an eigenvector of T with eigenvalue λ. Then v is also an eigenvector of T^{*} with eigenvalue $\bar{\lambda}$.

Orthogonal eigenvectors for normal operators

$\overline{\text { Suppose } T} \in \mathcal{L}(\mathcal{V})$ is normal. Then eigenvectors of T corresponding to distinct eigenvalues are orthogonal.

17.4 Exercises

5. Suppose n is a positive integer. Define $T \in \mathcal{L}\left(\mathbb{F}^{n}\right)$ by

$$
T\left(z_{1}, \ldots, z_{n}\right)=\left(0, z_{1}, \ldots, z_{n-1}\right)
$$

Find a formula for $T^{*}\left(z_{1}, \ldots, z_{n}\right)$.
6. Suppose $T \in \mathcal{L}(\mathcal{V})$ and $\lambda \in \mathbb{F}$. Prove that λ is an eigenvalue of T if and only if $\bar{\lambda}$ is an eigenvalue of T^{*}.
7. Suppose $T \in \mathcal{L}(\mathcal{V})$ and \mathcal{U} is a subspace of \mathcal{V}. Prove that \mathcal{U} is invariant under T if and only if U^{\perp} is invariant under T^{*}.
8. Suppose $T \in \mathcal{L}(\mathcal{V}, \mathcal{W})$. Prove that
(a) T is injective if and only if T^{*} is surjective;
(b) T is surjective if and only if T^{*} is injective.
9. Prove that

$$
\operatorname{dim} \operatorname{ker} T^{*}=\operatorname{dim} \operatorname{ker} T+\operatorname{dim} W-\operatorname{dim} V
$$

and

$$
\operatorname{dim} \operatorname{im} T=\operatorname{dim} \operatorname{im} T
$$

for every $T \in \mathcal{L}(V, W)$.
10. Make $P_{2}(\mathbb{R})$ into an inner product space by defining

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) \mathrm{d} x .
$$

Define $T \in \mathcal{L}\left(\mathcal{P}_{2}(\mathbb{R})\right)$ by $T\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=a_{1} x$.
(a) Show that T is not self-adjoint.
(b) The matrix of T with respect to the basis $\left\{1, x, x^{2}\right\}$ is

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

This matrix equals its conjugate transpose, even though T is not self-adjoint. Explain why this is not a contradiction.
11. Suppose $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that $S T$ is self-adjoint if and only if $S T=T S$.
12. Suppose V is a real inner product space. Show that the set of self-adjoint operators on V is a subspace of $\mathcal{L}(V)$.
13. Suppose V is a complex inner product space with $V \neq\{0\}$. Show that the set of self-adjoint operators on V is not a subspace of $\mathcal{L}(V)$.
14. Suppose $\operatorname{dim} V \geq 2$. Show that the set of normal operators on V is not a subspace of $L(V)$.
15. Suppose $P \in \mathcal{L}(V)$ is such that $P^{2}=P$. Prove that there is a subspace U of V such that $P=P_{U}$ if and only if P is self-adjoint.
16. Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $\|v\|=\sqrt{2}$ and $\|T v\|=5$.
17. Give an example of an operator $T \in \mathcal{L}\left(\mathbb{C}^{4}\right)$ such that T is normal but not self-adjoint.
18. Suppose T is a normal operator on V.

Suppose also that $v, w \in V$ satisfy the equations

$$
\|v\|=\|w\|=2, \quad T v=3, \quad T w=4 w .
$$

Show that $\|T(v+w)\|=10$.

